

電気に関する基礎知識~用 語と単位

(1)

電気とは?

重要度★

いきなり難問ですね。私たちの身近なものにもかかわらず、その存在は目に見えないので(一部雷など目に見えるものもありますが)、非常にイメージしにくいのは当然のことです。本来なら、ひとつひとつを十分学びながら知識を蓄えていくところですが、電気の世界は広くそして深いものなので、ここではあえて深く追求しません。「第二種電気工事士」の資格取得のために必要最低限のことだけ学んでいきましょう。

これから、いろいろな用語や単位などが出てきます。見慣れたものから、初めて見るものまでさまざまです。楽しみながら学んでいきましょう! 表1-1-1 電気の用語と単位

表1-1-2 累乗記号と読み

数	記号	読み
10 ¹²	Т	テラ
10 ⁹	G	ギガ
10 ⁶	M	メガ
10 ³	K	キロ
10 ⁻³	m	ミリ
10 ⁻⁶	μ	マイクロ
10 ⁻⁹	n	ナノ

表1-1-1 電気の用語と単位 -----

単位	読み	意味
V	ボルト	電圧の大きさ
Α	アンペア	電流の大きさ
Ω	オーム	抵抗の大きさ
W	ワット	電力の大きさ
Wh	ワット時	電力量(1時間あ たりの電力)
rad	ラジアン	位相
Н	ヘンリー	インダクタンス
F	ファラッド	静電容量
Hz	ヘルツ	周波数
Lx	ルクス	照度
Lm	ルーメン	光束

☜ズームアップ -

累乗記号は以下のように計算します。

 $10^2 \Rightarrow 10 \times 10 = 100, 10^3 \Rightarrow 10 \times 10 \times 10 = 1000$

$$10^{-3} \Rightarrow \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{1000}$$

読み方は、 10^2 を10の2乗(じじょう)、 10^3 を10の3乗(さんじょう)、 10^{-2} を10のマイナス2乗(マイナスじじょう)と呼びます。

直流回路の計算① 電圧・ 電流・抵抗~オームの法則

よく出るポイント

●オームの法則をマスターしましょう!

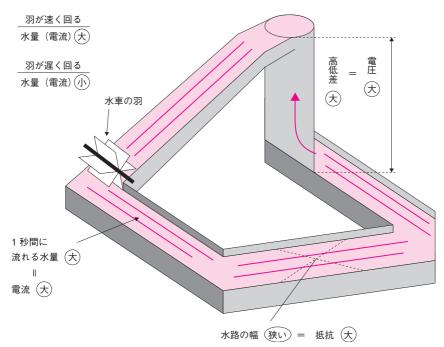
$$V = IR$$
 $I = \frac{V}{R}$ $R = \frac{V}{I}$

(1)

オームの法則

重要度★★★

図1-2-1は一般的な直流回路の回路図です。電源は電池やバッテリーになります。抵抗とは電灯などの機器になります。電流の流れはプラスからマイナスへ、常に一定しています。


図1-2-1 一般的な直流回路図

電気の基礎「電圧」「電流」「抵抗」とはどういうものなのか? イメージで捉えられるように図1-2-2を使って説明します。

電気はよく水の流れに例えられます。水の高低差は圧力(電圧)を表し、水を流すための動力になります。つまり、高低差(圧力)が大きいほど1秒間に流れる水量が増えます。水量とはすなわち電流のことです。また水路の幅というのは、抵抗といえます。水路の幅が狭いと抵抗が大きくなって水量(電流)は少なくなり、水路の幅が広いと抵抗が小さくなって水量(電流)は多くなるという関係性が成り立ちます。

図1-2-2 電流を水に例えたイメージ図

それでは、電圧(高低差)・電流(水量)・抵抗(水路幅)の関係性を 整理してみましょう。

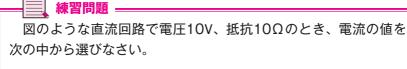
- ・抵抗(水路幅)が一定で比べると
 電圧(圧力)が低い⇒電流(水量)が少ない
 電圧(圧力)が高い⇒電流(水量)が多い
- ・**電圧** (圧力) が一定で比べると

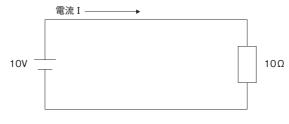
抵抗 (水路幅) が大きい (幅狭い) ⇒ 電流 (水量) が少ない 抵抗 (水路幅) が小さい (幅広い) ⇒ 電流 (水量) が多い

これらの関係をまとめると、「**電流**I (水量) は、**電圧**V (圧力) に **正比例し、抵抗**R (水路幅) に**反比例する**」という関係が成り立ちます。 このように「電圧」「電流」「抵抗」には切っても切れない関係があり、この3つの関係を式で表したものが

- ・電圧 V[V] = 電流 $I[A] \times$ 抵抗 $R[\Omega]$
- ・電流 I[A] = 電圧 V[V] ÷ 抵抗 R[Ω]

抵抗 R[Ω] = 電圧 V[V] ÷ 電流 I[A] となり、これを「オームの法則」といいます。


覚えよう! オームの法則・


電流
$$I = \frac{V}{R}$$
 電圧 $V = IR$ 抵抗 $R = \frac{V}{I}$

─ ☜ズームアップ −

電圧を求める場合、電流を求める場合、抵抗を求める場合、それぞれの求める記 号を指で隠すと式が現れます。

求める値を隠すと **R** I **計算式が現れます**

イ:0.5A ロ:1.0A ハ:2.0A ニ:5.0A

答え:口

■解答アドバイス

$$I=\frac{V}{R}$$
に代入し、 $\frac{10}{10}$ =1A となります。