書籍概要

絵と図でわかる

絵と図でわかる
データサイエンス
――難しい数式なしに考え方の基礎が学べる

著者
発売日
更新日

概要

情報通信技術(ITC)が高度に発展した今日,私たちは,さまざまなデータに囲まれて暮らしています。データがなければ,ありふれた日々の営みですらスムーズには行えません。そんな現代社会で必須の「データ」を扱う科学が,「データサイエンス」です。本書は,データサイエンスの概観がざっくりと把握できるよう,イラストや図をたくさん使って,やさしく解説した「入門の入門書」です。難しい数式は使っていないので,数式が苦手な方にもおすすめです。Excelでデータサイエンスを体験できるダウンロードデータ付き。

こんな方におすすめ

  • 数式が苦手だが,データサイエンスを学んでみたい人
  • データサイエンスを学ばなければならないが,数式が苦手な人
  • データサイエンスについて,ざっくりとわかる入門書を探している人

サンプル

samplesamplesamplesample

目次

  • はじめに

第1章 データサイエンスとは―データと社会―

  • 1-1 データと社会
    • 1)私たちの日常生活とデータ
    • 2)データ化社会がやってきた
  • 1-2 データサイエンスとデータサイエンティスト
    • 1)データサイエンスはさまざまな定義が可能な科学
    • 2)データ解析の4つの工程
    • 3)データサイエンティストの仕事

第2章 データを知る―データ解析の第1工程―

  • 2-1 データのタイプを分類する
    • 1)調査データと非調査データ
    • 2)ビッグデータと非ビッグデータ
  • 2-2 データの特徴をつかむ
    • 1)変数とデータ
    • 2)量的データと質的データ
    • 3)個票データと集計データ
  • 2-3 データを準備する
    • 1)調査によるデータ収集
    • 2)Webによるデータ収集
  • 2-4 データを整形する
    • 1)データを整形するとは
    • 2)完全データと不完全データ
    • 3)外れ値
    • 4)選択バイアス

第3章 データを読む―データ解析の第2工程―

  • 3-1 データを集計し可視化する
    • 1)データの分布を把握する
    • 2)さまざまなグラフ
  • 3-2 データの情報を要約する
    • 1)データの情報を得る
    • 2)1変数のデータの特徴をつかむ
    • 3)2変数の関係を見つける
    • 4)多次元データの関係を把握する
    • 5)結論を一般化するために

第4章 データを分類する―データ解析の第3工程―

  • 4-1 似たもの同士を分類する
    • 1)クラスター分析の考え方
    • 2)クラスター分析で分類する
  • 4-2 複数の変数を合成する
    • 1)主成分分析の考え方
    • 2)主成分分析で分類する
  • 4-3 質的データを分類する
    • 1)数量化Ⅲ類の考え方
    • 2)数量化Ⅲ類で分類する

第5章 データから予測する―データ解析の第4工程―

  • 5-1 データに基づいて予測する
    • 1)回帰分析の考え方
    • 2)回帰分析で予測する
  • 5-2 予測のよさを評価する
    • 1)重回帰分析の考え方
    • 2)よい回帰モデルとは
    • 3)さまざまな回帰診断
  • 5-3 質的データを予測する
    • 1)数量化Ⅰ類
    • 2)ロジスティック回帰

第6章 データの倫理を考える―データ化社会への警鐘―

  • 6-1 データの倫理とは
    • 1)データの倫理とデータ化社会
    • 2)情報倫理の4つの原則とデータ倫理の規範例
    • 3)分析の倫理
  • 6-2 倫理違反の事件簿
    • 1)ディオバン事件
    • 2)統計不正事件

第7章 データサイエンスとAI―ビッグデータがもたらしたデータ革命―

  • 7-1 機械学習の基本
    • 1)機械学習・深層学習・AI
    • 2)データプレパレーション
    • 3)選択アルゴリズム
    • 4)パラメータチューニング
    • 5)モデル選択
  • 7-2 ニューラルネットワークとAI
    • 1)AIとデータサイエンスの関係
    • 2)ニューラルネットワークとは
    • 3)ニューラルネットワークの構成要素
  • 付録 データサイエンスを体験する
  • データサイエンスの理解を深めるための参考図書
  • 索引

サポート

ダウンロード

付録データのダウンロード

(2021年5月21日更新)

本書(『絵と図でわかる データサイエンス』)をご購入頂いた方は,データサイエンスを体験するためのデータをこちらからダウンロードできます。

本書の下記の場所に記載されている文字を入力し,[ダウンロード]ボタンをクリックしてください。

DS210521.zip(1MB)

解凍すると,フォルダの中にサンプルデータ(Excelブックファイル)と本書に掲載しきれなかった計算例の説明(PDFファイル)を参照することができます。

正誤表

本書の以下の部分に誤りがありました。ここに訂正するとともに,ご迷惑をおかけしたことを深くお詫び申し上げます。

(2024年10月21日最終更新)

P.59 図3-4の右表3-4-2

f.jpg

t.jpg

P.59 左の段の下から5行目

この集計結果を見ると、「商品718」は、男性でこの商品を買った人が2人(男性客の約7%)、女性で50人(女性客の約91%)となっており、
この集計結果を見ると、「商品718」は、男性でこの商品を買った人が12人「(男性客の48%)、女性で73人(女性客の約97%)となっており、

(以下2022年6月22日更新)

P.70:図3-17の偏差の式 左辺第1項

データの数
データの

P.77:図3-25の相関係数の計算式 下段の式

11.2×113.1
11.2×112.4

P.77:図3-25の共分散の計算式 分子

416.7(全3か所)
400(全3か所)

P.92:図4-9-1

ただしい図は次の通りです。

DS4-09-1.jpg

P.98:図4-13の横軸ラベル

発生率(%)
発生率(10万分率

P.128:図5-15「仮説の採択」の対立仮説の下の説明文

P-値が有意水準(5%)より小さい
真の回帰係数は0ではない

P.132:右段の記述の上から7行目

条件指数
条件

P.133:左段の記述の下から3行目

条件指数
条件

P.133:右段の記述の下から11行目

残差が2.16と-2.14を示す
残差が2.16-2.142.49を示す

P.136:図5-23の→Yに対応する部分

説明変数
説明変数

P.140:図5-27の下段の計算式の第1行目

Y=-9.720+0.246X1+0.246X2
Y=-9.720+0.246X1+0.026X2

P.146:最上段の小見出し

データの数
データの

P.149:図6-7の図中(上段の図)の見出し

データの消費者
分析結果の消費者

P.149:図6-7の図中(下段の図)の見出し

データの生産者
分析結果の生産者

P.170:図7-9の図中(下段の図)の右の箱

入力信号
出力信号

商品一覧