はじめMath! Javaでコンピュータ数学

第23回 図で論理を視覚的にとらえよう[後編]

この記事を読むのに必要な時間:およそ 1 分

3.

図23.3 論理式をベン図で示す3.

図23.3 論理式をベン図で示す3.

図23.3は問題の論理式をベン図で表現したものです。左辺からみていきましょう。左辺を図中上側に示しています。問題1.,2.の手順と同様にベン図を追ってみてください。すると,最終的に右上のベン図が出来上がることが納得できるでしょう。

次に図中の下側に右辺を示します。これも同様に左から右にベン図を追っていくと,右下のベン図が納得できるはずです。

するとどうでしょう,最終的に右端上下に並んだ図が一致していることがわかります。それぞれの示す論理式の形は異なりますが,ベン図がそれぞれの論理式の等価なことを教えてくれるわけです。面白いですね。

4.

図23.4 論理式をベン図で示す4.

図23.4 論理式をベン図で示す4.

図23.4は問題の式をベン図で表しています。これはド・モルガンの法則の式です。

左辺はA+Bではない部分,すなわちが真の部分にハッチングを施したベン図です。

右辺はのベン図です。これらの論理積をとると,図中下側のベン図が得られます。

左辺と右辺のベン図が一致していますね。

不思議な魔法に思えるド・モルガンの法則ですが,ベン図で表してみると不思議と納得してしまいます。ベン図とは全く便利な方法ですね。

ベン図を描くと,抽象的だった論理式がなんだかすっきりと図示されて「確かに,確かに」と納得できると思います。問題で示した式の左辺と右辺の論理的な意味が変わっていないことがわかります。ベン図の有効性がお分かりいただけたと思います。

プログラムを作っていてif文が絡み合ってわけがわからなくなったら,ベン図を書いて場合を列挙して検討してみるといいことがあるかもしれません。真理値表でも同じことが期待できますが,図には図の良いところがあるものです。困ったときにはいろんな方法を試してみましょう。

今回のまとめ

  • ベン図は論理式の意味の確認,左辺・右辺が一致しているかどうかの確認に役立ちます。

著者プロフィール

平田敦(ひらたあつし)

地方都市の公立工業高等学校教諭。趣味はプログラミングと日本の端っこ踏破旅行。2010年のLotYはRuby。結城浩氏のような仕事をしたいと妄想する30代後半♂。