初歩からしっかり学ぶシリーズ実習 多変量解析入門
―Excel演習でムリなくわかる
2011年11月16日紙版発売
涌井良幸,涌井貞美 著
B5判/256ページ
定価2,398円(本体2,180円+税10%)
ISBN 978-4-7741-4895-3
書籍の概要
この本の概要
本書は,回帰分析や因子分析を中心に,多変量解析の手法を学習できる入門書です。
Excelを用いた演習が豊富にあるため,抽象的で難解な多変量解析も,考え方から分析法まで,ムリなく理解できるようになります。『実習 統計学入門』の続編として,次の学習に役立ちます。
目次
- はじめに
- Excelサンプルファイルのダウンロードについて
- サンプルファイルの内容
- Excelのバージョンについて
- 本書の利用上の注意
1章 多変量解析の準備
1-1 多変量解析の目的 ~ 複数項目の資料から宝物を抽出する術
- 複数項目からなる多変量資料
- 多変量解析は簡単
- 多変量資料はExcelの得意技
- 個票データが重要
- 個票データで用いる言葉
- <Memo>データの加工
1-2 平均値と分散,標準偏差 ~ 多変量解析で重要な指標
- 平均値
- 偏差と変動
- 分散
- 分散の記号
- 標準偏差
- 平均,変動,分散,標準偏差を求めるExcel関数
- 〔実習1〕Excelで見てみよう
- <Memo>VARとVARP
1-3 相関図 ~ 2変量の関係をイメージ化
- 2変量の関係を描く相関図
- 正の相関・負の相関
- 〔実習2〕Excelで見てみよう
1-4 共分散,相関係数 ~ 2変量の関係を数値化する
- 共分散
- 2変量の関係を数値化する共分散
- 共分散の記号
- 相関係数
- 相関係数の判断
- 分散共分散行列と相関行列
- 共分散・相関係数が多変量解析の基本
- 共分散,相関係数を求めるExcel関数
- 〔実習3〕Excelで見てみよう
- <Memo>-1≦相関係数≦1 の証明
1-5 変量の標準化 ~ データを規格化して見やすくする技法
- 変量を標準化する「変換公式」
- 標準化された変量の共分散と相関係数は一致
- 〔実習4〕Excelで見てみよう
- <Memo>偏差値
1-6 パス図 ~ 変量の関係を図式化
- 変量の関係を図示するパス図
- 潜在変数を含むパス図
- パス図のまとめ
- <Memo>パス解析
1-7 クロス集計表 ~ 2つの項目の関係を表にする方法
- 例から調べるクロス集計表
- 表側と表頭
- 〔実習5〕Excelで見てみよう
- <Memo>ピボットテーブル作成機能を利用
1-8 ソルバーの使い方 ~ 多変量解析のための強力な武器
- ソルバーの確認
- ソルバー利用法
- 〔実習6〕Excelで見てみよう
- <Memo>ソルバーができること
- <Memo>ソルバーのインストール
1-9 質的データの統計学 ~ 非数値データの扱い
- 量的データと質的データ
- データを測る尺度には4種
- アンケートデータの統計解析
- アイテムとカテゴリー
2章 回帰分析
2-1 単回帰分析とは ~ 相関図上の点を回帰直線で表現
- 単回帰分析とは
- 回帰方程式の使い方
- 回帰直線とその方程式を見てみよう
- 〔実習7〕Excelで見てみよう
2-2 単回帰分析の回帰方程式の求め方 ~ 予測値と実測値との誤差を最小化
- 実測値と予測値の区別
- 回帰方程式の求め方
- 単回帰分析のパス図
- 〔実習8〕Excelで見てみよう
- <Memo>単回帰分析の回帰方程式の公式
2-3 決定係数 ~回帰分析の精度を示す指標
- 回帰方程式の精度
- 回帰方程式の説明力を表す決定係数
- 重相関係数
- 〔実習9〕Excelで見てみよう
- <Memo>重相関係数が決定係数の平方根と一致することの証明
2-4 重回帰分析 ~ 1変量を複数の変量から説明する分析法
- 重回帰分析とは
- 回帰方程式の視覚化
- 重回帰分析の回帰方程式の決定法
- 重回帰分析の決定係数
- 〔実習10〕Excelで見てみよう
- <Memo>統計局のHPはデータの宝庫
- <Memo>配列関数
2-5 対数線形モデルの回帰分析 ~ 非線形モデルへの対応法
- 対数線形モデルとは
- 変数を変換して線形モデル化
- 〔実習11〕Excelで見てみよう
- <Memo>対数法則
- ≪発展≫重回帰分析の回帰方程式の公式
3章 主成分分析
3-1 主成分分析の考え方 ~ 合成変量から資料を分析
- 「合計点」を一般化した主成分
- 変量の合成の原理
- 合成変量の具体的な作り方
- 主成分分析のパス図
- 〔実習12〕Excelで見てみよう
3-2 寄与率 ~主成分の説明力を表現する指標
- 主成分の寄与率
- <Memo>TOPIX
- 〔実習13〕Excelで見てみよう
3-3 第2主成分 ~ 主成分の搾り残しから抽出される第2の主成分
- 主成分の「搾り残し」から得られる第2主成分
- 主成分を搾り取った残りの「搾り残し」資料の作成方法
- 〔実習14〕Excelで見てみよう
3-4 累積寄与率 ~ 主成分全体の説明力を示す指標
- 寄与率の和が累積寄与率
- 〔実習15〕Excelで見てみよう
- <Memo>加重平均
3-5 変量プロット ~主成分による変量の特性の視覚化
- 変量を主成分から眺める変量プロット
- 〔実習16〕Excelで見てみよう 102
3-6 主成分得点プロット ~ 主成分による個体の特性の視覚化
- 主成分得点
- 個体を主成分から評価する主成分得点プロット
- 〔実習17〕Excelで見てみよう
3-7 主成分分析の数学的な定式化~ ラグランジュの未定係数法
- 主成分の求め方の復習
- 主成分の分散を求める
- ラグランジュの未定係数法とは?
- ラグランジュの未定係数法を用いる
- 固有値問題を解く
- 固有値問題の解から主成分を得る
- 寄与率も固有値から簡単に算出
- 〔実習18〕Excelで見てみよう
- <Memo>固有値の総和は分散の総和と一致
4章 因子分析
4-1 因子分析のしくみと「やらせ」データの作成 ~ データから見る因子分析の仕組み
- 因子分析の発想法
- データ作成でわかる因子分析の仕組み
- 因子を仮定
- 因子データを作成
- 共通因子の影響力を設定
- <Memo>因子得点の作り方
- 共通因子から成績を算出
- 独自の部分を取り込む
- <Memo>独自因子データの作り方
- データの完成
- 因子分析の目標
- 〔実習19〕Excelで見てみよう
- <Memo>行列の和と差
4-2 2因子モデルの因子分析 ~ 因子負荷量の方程式を導出
- 因子分析の基本方程式
- 因子分析の計算の原理
- 古典的因子分析の仮定
- 因子負荷量で分散,共分散を表現
- <Memo>行列の積
- 共通性と独自性
- 実際の分散・共分散を算出
- 理論値と実測値を等置
- 方程式(ⅵ),(ⅶ)の難題
- 共通性の推定
- 因子負荷量の方程式を近似的に解く
- 因子分析の目標の式完成
- 因子分析の結果の吟味
- 本来の解と比較
- 〔実習20〕Excelで見てみよう
- <Memo>SUMSQ関数
- <Memo>SUMXMY2関数
- ≪発展≫因子負荷行列と因子決定行列
4-3 解の任意性とバリマックス回転 ~ 回転して因子の意味を理解
- 因子負荷量の解は無限個
- 因子分析の基本方程式の特徴
- 問題を図示してみよう
- 因子負荷量を反転・回転してみよう
- バリマックス回転
- 〔実習21〕Excelで見てみよう
- <Memo>因子の解釈上の注意
4-4 共通性をSMC法で推定 ~ 共通性推定の最も有名な方法
- 共通性のおさらい
- 共通性推定のためのSMC法
- SMC法で実際に共通性を推定
- SMC法の推定値を用いて解いてみよう
- 〔実習22〕Excelで見てみよう
4-5 因子の寄与率 ~ 因子の説明力を示す指標
- 前節(4-4節)のまとめ
- 資料全体に対する共通因子の説明力が「寄与率」
- 累積寄与率
- 〔実習23〕Excelで見てみよう
4-6 反復推定法 ~ 推定値と算出値との不整合を解決
- 推定した共通性と算出した共通性を比較
- 反復計算の原理
- 〔実習24〕Excelで見てみよう
4-7 2因子直交モデルを主因子法で解く ~ 歴史的に有名な因子負荷量の決定法
- 因子負荷量の方程式を行列表現
- 因子決定行列を展開
- 固有値と寄与率
- 実際に固有値問題を解く
- 最小2乗法による解と比較
- 累積寄与率を計算してみよう
- 〔実習25〕Excelで見てみよう
- <Memo>共分散構造分析(SEM)
5章 判別分析
5-1 相関比 ~ 2群の離れ具合を表現する比
- 具体例で見てみる
- 変動の分離
- 群の離れ具合を示す群間変動
- <Memo>ST=SB+SWの証明
- 群のまとまり具合を示す群内変動
- 全変動に占める群間変動の割合が相関比η2
- 相関比η2の性質
- 〔実習26〕Excelで見てみよう
5-2 線形判別分析のしくみ ~ 相関比が最大になるように変量を合成
- 具体例で見てみよう
- 群が分離して見える変量を合成
- 変量合成の原理は相関比の最大化
- 判別係数イタリックa,bの確定のための条件
- 定数項決定の原理は相関比とは別
- 判別得点
- 〔実習27〕Excelで見てみよう
- <Memo>SUMPRODUCT関数
5-3 マハラノビスの距離 ~ 確率を加味した遠近表現
- 変量の標準化の復習
- 標準化された変量を平均値からの「標準的な距離」と解釈
- 多変量の場合のマハラノビスの距離
- マハラノビスの距離を一般化
- 〔実習28〕Excelで見てみよう
5-4 マハラノビスの距離による判別分析 ~ 距離の遠近で群判別
- マハラノビスの距離による判別の原理
- 〔実習29〕Excelで見てみよう
- <Memo>一般的なマハラノビスの距離の公式
6章 質的データの多変量解析
6-1 数量化Ⅰ類 ~ 量的データを基準に質的データを数量化
- 数量化Ⅰ類の分析対象となる資料
- カテゴリーが見やすいように表をアレンジ
- 各カテゴリーにカテゴリーウェイトを付与
- 目的変量とサンプルスコアとの誤差を最小化
- カテゴリーウェイトを条件付け
- 最小2乗法を用いて実際に計算
- 結果を見てみる
- <Memo>林知己夫
- 〔実習30〕Excelで見てみよう
- <Memo>ダミー変数を用いた回帰分析と数量化Ⅰ類
6-2 数量化Ⅱ類 ~質的データを基準に質的データを数量化
- 数量化Ⅱ類の分析対象となる資料
- カテゴリーウェイトの設定
- 2群を遠ざけるようにウェイトを決定
- 相関比のおさらい
- 相関比を最大にする数量化が数量化Ⅱ類
- カテゴリーウェイトに条件付け
- 相関比η2を最大にするように数量化
- 〔実習31〕Excelで見てみよう
- <Memo>第2の解
6-3 数量化Ⅲ類とコレスポンデンス分析 ~ クロス集計表でカテゴリーを数量化
- 数量化Ⅲ類,コレスポンデンス分析の分析対象となる資料
- 斜めにまとまりのある表になるよう,カテゴリーを並べ替え
- 「斜めにまとまりのある」表を数学的に表現すると
- クロス集計表から個票データを作成
- カテゴリーウェイトの条件付け
- 結果を見てみる
- 〔実習32〕Excelで見てみよう
- <Memo>クロス集計表は2変量の個票データと等価
- <Memo>OFFSET関数
6-4 数量化Ⅳ類 ~ 互いの親近性から関係を数量化
- 数量化Ⅳ類の分析対象となる資料
- 親近度の重みを付けた距離を最小化
- カテゴリーウェイトに条件を付けてからQを最小化
- 〔実習33〕Excelで見てみよう
- <Memo>表側と表頭の関係を表一杯に埋めるには?
- <Memo>MATCH関数
付録
- 付録A 分散と共分散の計算公式
- 付録B 因子分析の分散,共分散の計算
- 付録C ベクトルと行列の基本
- 付録D 対称行列の固有値問題とその性質
- 付録E 固有値問題の数値的解法
- 付録F 第1主成分を取り除いた「搾り残し」変量の導出
- 付録G 多変量解析のためのExcel関数
この本に関連する書籍
-
初歩からしっかり学ぶ 実習 統計学入門 ~Excel演習でぐんぐん力がつく
本書は,実習中心に統計学を基礎から効果的に学習できる大判ビジュアル教科書です。実習にはExcelを使います。Excelのもつ表やグラフの表示機能とシミュレーション機能...