データのつながりを活かす技術
〜ネットワーク/グラフデータの機械学習から得られる新視点

[表紙]データのつながりを活かす技術 〜ネットワーク/グラフデータの機械学習から得られる新視点

紙版発売
電子版発売

A5判/256ページ

定価3,300円(本体3,000円+税10%)

ISBN 978-4-297-14784-6

電子版

→学校・法人一括購入ご検討の皆様へ

この本の概要

ネットワークデータは,点と点の「つながり」によって表現されるデータです。決して特別なデータではなく,私たちの日常生活のさまざまな場面に存在しています。たとえば,SNSのフォロー関係やWebページ間のリンクのような明らかにネットワーク構造を持つデータだけでなく,ECサイトの購買履歴や株式市場の取引といった,一見ネットワークとは無関係に思えるデータにも,つながりの構造を見出すことができます。この「つながり」を活用することで,これまで見えなかったデータの新しい特徴を引き出すことが可能になります。

近年では,計算機リソースの向上や新しいアルゴリズムの登場により,ネットワークデータの実用化が急速に進んでいます。本書では,各手法について平易な言葉で解説することを目指すだけでなく,Pythonを用いたコード例を通じて,データの取り扱いから特徴抽出,さらにNode EmbeddingやGNNといった機械学習手法への応用までを実践的に紹介します。

また,単なる技術の羅列ではなく,身近なデータからネットワーク構造をどのように見出し,意味付けし,課題解決に結びつけるかという思考プロセスや応用事例にも重点を置いています。具体例としては,SNSのフォロー関係やWebページのリンクといった典型的なネットワークデータはもちろん,ECサイトの購買履歴やビジネス文書,さらにはレシートといった,通常「表形式」で扱われるデータに隠れた「つながり」を抽出・活用する手法を丁寧に解説します。

こんな方におすすめ

  • ネットワーク分析を学びたい方
  • データから新しい知見を見つけたい方

著者プロフィール

黒木裕鷹(くろきゆたか)

1994年生まれ。2020年東京理科大学大学院工学研究科修士課程修了。同年よりSansan株式会社に入社し,現在は企業データのドメイン横断での分析・利用や,実験的な機能の開発に従事。2018年度統計関連学会連合大会 優秀報告賞,2022年度人工知能学会金融情報学研究会 (SIG-FIN) 優秀論文賞 などを受賞。大阪公立大学 客員研究員。


保坂大樹(ほさかたいじゅ)

2020年に早稲田大学で工学修士号を取得し,Sansan株式会社に入社。入社後は帳票の解析技術の研究開発および運用に取り組む。現在は同社のSaaS事業においてプロダクトマネジメントを行う一方で,帳票解析チームのリーダーとしてプロジェクトマネジメントも担当する。単語の意味や主体の持つ特性が単語埋め込みやノード埋め込みで得られる数値表現にどのように反映されるかに強い関心をもつ。