この記事を読むのに必要な時間:およそ 0.5 分
ガロアが果たした役割~解の公式はあるやなしや~
―この疑問に明解な答えを与えたのが21歳という若さで世を去った数学者エヴァリスト・ガロア。波乱万丈の生涯を若くして閉じたガロアですが,それは数学上実に凝縮されたものでした。いまなお広範囲に適用され生き続けるガロア理論とは果たして何だったのか,前代未聞の発想力は一体どうして生まれたのでしょうか?
みなさんも中学生のときに2次方程式の解の公式「にえーぶんのまいなすびー・・・」を見たことがあるでしょう。実はルート数の作る「体」や「群」という考えを使えば,3次・4次方程式の解の公式も導くことができるのです。しかしながら,それらはとても複雑なために,学校では教えられませんでした。因数分解や組立て除法を使って解いた記憶はありませんか?
では,5次以上の方程式の場合,解の公式は存在するのでしょうか。この疑問は300年も数学者たちを悩ませ続けました。そこで現れたのがガロアです。彼は「それは存在しない!」と言いきったのです。ガロアの定理です。そしてこれこそ数学史上最大のスキャンダルとなるのです。本書では,ガロアがどうしてそう考えたのか,その発想が生まれた背景をさぐりながら,方程式の解の公式の本質に迫ります。解の公式が存在するとはそもそもどういうことなのでしょうか。
解ける方程式,解けない方程式,そのカギを握るのが“対称性”です。対称性―見分けがつかない―という性質はふつう図形だとぴんとくる人も多いでしょう。あみだくじも対称性を持っています。ガロアがすごいところはそれを代数にもあてはめたことです。本書でぜひガロアのひらめきと,それによる数学の進化,それらを成し遂げたガロアのかっこよさを味わってください。