[改訂新版]ITエンジニアのための機械学習理論入門
2021年7月17日紙版発売
2021年7月14日電子版発売
中井悦司 著
A5判/256ページ
定価2,948円(本体2,680円+税10%)
ISBN 978-4-297-12233-1
書籍の概要
この本の概要
機械学習を基礎から理論的に学びたい,そんなITエンジニアに向けて執筆された本です。初版から約5年が経過し,全面カラー化して「改訂新版」としました。Pythonのコーディング環境もGoogle Colaboratoryに刷新,これまで5回にわたる重版で修正した内容に加え,最新の書き下ろし修正でアップデートしました。初版から内容は古びておらず,逆に,機械学習を学ぶうえで重要な理論がほぼカバーされていますので,まさに入門の定番書になりました。カラー化によりグラフも見やすくなり,理解が進むのもお勧めするポイントです。
こんな方におすすめ
- 機械学習について興味があるITエンジニア,大学生,専門学校生,高専生など
著者の一言
筆者が機械学習の勉強を始めたのは,東京の恵比寿に日本支社を持つLinuxディストリビューターで,オープンソースソフトウェアに関わる仕事をしている頃でした。当時は,日々の業務で直接に機械学習にかかわっているわけではありませんでしたが,ふとしたきっかけでいくつかの教科書に目を通してみると,大学時代に学んだ理論物理学の教科書にそっくりの数式が並んでいることに気がつきました。――「あー。これ。知ってる」というのが率直な感想でした。本書で解説している機械学習の理論は,数理統計学が基礎になっており,実はこの点は,理論物理学とも共通しているのです。
いまは,機械学習のツールやライブラリーがオープンソースで提供されて,誰でも自由に利用できる時代になりました。もはや「専門家」だけの特別なツールではありません。しかしながら,これらのツールとあわせて,その背後にある「理論」こそがより広く万人に解放されるべきだと信じています。機械学習は,高度な数学の理論が現実世界の問題解決に役立てられる舞台であり,ITエンジニアの知的探究心を刺激する最高の素材です。機械学習の面白さを知れば,「学校の数学は社会で役に立たない」なんて,まったくの勘違いだとわかるでしょう。
本書をきっかけに,「もう一度,数学を学びなおして,より高度な機械学習の理論をマスターしよう」と考える読者が現れることを心待ちにしています。
この書籍に関連する記事があります!
- [改訂新版]ITエンジニアのための機械学習理論入門 ――の舞台裏
- 本書『[改訂新版]ITエンジニアのための機械学習理論入門』の初版は2016年に発行され,今回は約5年ぶりの改訂版になります。
本書のサンプル
本書の紙面イメージは次のとおりです。画像をクリックすることで拡大して確認することができます。
目次
第1章 データサイエンスと機械学習
- 1.1 ビジネスにおけるデータサイエンスの役割
- 1.2 機械学習アルゴリズムの分類
- 1.3 本書で使用する例題
- 1.4 サンプルコード実行環境の準備
第2章 最小二乗法:機械学習理論の第一歩
- 2.1 多項式近似と最小二乗法による推定
- 2.2 オーバーフィッティングの検出
- 2.3 付録 ― ヘッセ行列の性質
第3章 最尤推定法:確率を用いた推定理論
- 3.1 確率モデルの利用
- 3.2 単純化した例による解説
- 3.3 付録 ― 標本平均/標本分散の一致性と不偏性
第4章 パーセプトロン:分類アルゴリズムの基礎
- 4.1 確率的勾配降下法のアルゴリズム
- 4.2 パーセプトロンの幾何学的な解釈
第5章 ロジスティック回帰とROC 曲線:分類アルゴリズムの評価方法
- 5.1 分類問題への最尤推定法の応用
- 5.2 ROC 曲線による分類アルゴリズムの評価
- 5.3 付録 ― IRLS法の導出
第6章 k平均法:教師なし学習モデルの基礎
- 6.1 k平均法によるクラスタリングと応用例
- 6.2 怠惰学習モデルとしてのk近傍法
第7章 EMアルゴリズム:最尤推定法による教師なし学習
- 7.1 ベルヌーイ分布を用いた最尤推定法
- 7.2 混合分布を用いた最尤推定法
第8章 ベイズ推定:データを元に「確信」を高める手法
- 8.1 ベイズ推定モデルとベイズの定理
- 8.2 ベイズ推定の回帰分析への応用
この本に関連する書籍
-
ITエンジニアのための強化学習理論入門
前作の『ITエンジニアのための機械学習理論入門』から,5年経過しましたが,AI(人工知能)や機械学習に対しての期待と関心はまったく衰えません。むしろ機械学習の利用...
-
AIエンジニアを目指す人のための 機械学習入門 実装しながらアルゴリズムの流れを学ぶ
機械学習はAI(人工知能)の基礎技術です。今後AIの利活用が進むにつれて、機械学習をコンピュータシステムに組み込んでビジネスに活用できる人材(本書ではAIエンジニ...
-
Excelでわかる機械学習 超入門 ―AIのモデルとアルゴリズムがわかる
機械学習とは,コンピュータに学習させる技術を指します。AIの発展とともに,さまざまな手法が登場してきました。このAIのモデルとそのアルゴリズムは種類が多く,AIに...